Coding RT Treatments: Head & Neck (H&N)

NAACCR DECEMBER 5, 2019 WILSON APOLLO, CTR, RTT, MS

NAACCR

General overview of H&N cancers

Oropharynx includes soft palate, tonsils, BOT, pharyngeal wall,

■3:1 male: female ratio for oropharyngeal cancer,

Incidence of HPV+ oropharyngeal cancers increase,

- HPV-associated oropharyngeal squamous cell carcinoma (OPSCC) w/ good prognosis (p53 not mutated),
- First drainage level for most of oropharynx: Level II, jugulodigastric lymph nodes (~ 70% of pts dx'd w/ SCC of oropharynx present w/ clinically+ LNs),
- "HPV+ SCC of oropharynx most commonly found in nonsmokers, nondrinkers,

Most common histologies:

- SCC (~90%)
- Non-Hodgkin's lymphoma

Management of H&N cancers

- ChemoRT effective, but w/ significant acute & long-term toxicities,
- **EGFR** overexpression in ~ 90% of HNSCC (H&N Squamous cell carcinoma),
- **Cetuximab**, only EGFR inhibitor USDA approved for treatment of HNSCC, for locoregional dz,
- •Cetuximab approved as first-line txt for recurrent or metastatic HN cancer in combination with chemo (platinum-based),
- Cisplatin + EBRT still the standard of care for HNSCC,
- ■T1, RT=~66 Gy
- ■>T1, RT= 70 Gy (parotid glands to get no more than 20-26 Gy to avoid permanent xerostomia).

NAACCR

Suspicious Lymphatics in H&N Cancer

LN transverse diameter > 10 mm (5-8 mm for retropharyngeal LNs, Level VIIa, & 12-15 mm for upper jugular LNs, Level II),

Central necrosis, regardless of size,

- Rounded shape vs. oval shape,
- Evidence of extracapsular spread,
- **•**3 or more LNs sized 6-8 mm grouped.

Acute effects of RT on H&N patients

- a. Xerostomia: best managed by use of IMRT/VMAT planning techniques, which minimize dose to organs at risk (OARs). Improves over time, even beyond a year post RT, but rarely returns to baseline. De-intensified CRT (ChemoRT); 60 Gy IMRT w/ concurrent wkly low-dose cisplatin may decrease txt-related toxicities,
- b. Oral mucositis (OM): can be managed by intra-oral <u>photobiomodulation</u> (PBM), which involves use of low dose laser treatments; also referred to as low-level light therapy (LLLT),
- c. Osteoradionecrosis: ~ 6%
- d. Peg tube dependency: 15-20%

Number of Phases- Example 1

A. Change in Target Volume (SIB: Simultaneous Integrated Boost):

Txt Site	Energy	Dose/fx	Total dose	Start date	End date
PTV70, LT	6MVX	200	7000	9/11/18	10/30/18
tonsils/LNs					
PTV63, high	6MVX	180	6300	9/11/18	10/30/18
risk region					
PTV54, neck	6MVX	154	5390	9/11/18	10/30/18
nodes					

Number of Phases?

3 Phases

Number of Phases- Example 2

*Txt Site	Energy	Dose/fx	Total dose	Start date	End date			
T12-L3 spine	6X	250 cGy	2500 cGy	3/4/19	3/15/19			
Whole brain (WB)	6MV	300 cGy	3000 cGy	3/4/19	3/15/19			
Number of Phases? 2 Phases • <u>Assuming metastatic sites are from same primary</u> . •Which is Phase 1?? See Slide # 10								

NAACCR

Number of Phases- Example 3

C. Change in Planning Technique:

Txt Site	Energy,	Dose/fx	Total dose	Treatment	Planning
	Technique			Modality	Technique
Prostate	6X/IMRT	180 cGy	4500 cGy	02	05: IMRT
Prostate	I-125 Seed		10,000	10: LDR,	88: NA
	Implant		cGy	interstitial	

Number of Phases? 2 Phases

What is total dose summary??

10

ALERT!

Recent revision/addition to Order of Phases to the CRT Guide and STORE Manual

NAACCR

"The Brief" Update September 12, 2019

Instructions for coding multiple phases for radiation treatment

When a radiation treatment summary has multiple PHASES (aka delivered prescriptions):

A. Code the phases from the earliest to latest start date.

B. If there are multiple phases with the same start date, code the phases from highest to lowest total dose.

C. If there are multiple phases with the same start date and same total dose, then any order is acceptable.

14

16

Radiation Therapy to Draining Lymph Nodes

Key Points

- 1. SBRT does not target lymph nodes,
- 2. IORT for breast cancer does not target lymph nodes,
- 3. Chest wall or lumpectomy <u>tumor bed/cavity boost</u> (either photons or electrons) does not include lymph nodes,
- 4. For pelvic sites, if pelvic/whole pelvis irradiation is mentioned, assume the regional lymph nodes for that site are included,
- 5. Interstitial or intracavitary brachytherapy(HDR or LDR) does not target regional lymph nodes

NAACCR

NAACCR

Upcoming revision/addition to Dose/fx and Total Dose for brachytherapy procedures!

ALERT!

Look for upcoming update in The Brief.

Will also be added to the revised CRT Guide and STORE manual

Not yet in effect. You can continue to use current rules/guidelines as found in CTR Guide

ALERT!

If dose/fraction and total dose is provided in Gy or cGy units *for any brachytherapy procedure*, capture this information in your abstract. Do not use codes 99998 or 999998 if this information is found in treatment summary!

If brachytherapy is only mode of treatment and dose is not provided in cGy, code to 999999 for total dose.

You <u>cannot</u>, however, add dose from EBRT phase to that of brachytherapy phase to get total dose!

E: If brachytherapy is only mode of txt= Dose in cGy when given.

RT Summary:

Using a 6/1 mini SAVI catheter, RT lumpectomy cavity received 34 Gy in 10 treatments, BID.

Plan ID	Energy	Fx	Dose/fx (cGy)	Total Dose (cGy)	Start Date	End Date
RT breast	SAVI catheters (Ir-192)	10	340	3400		

NAACCR

Total Dose F: Example 1

F: Brachytherapy + EBRT: Total dose summary = 999998.

Plan ID	Energy	Fx	Dose/fx (cGy)	Total Dose (cGy)	Start Date	End Date
Pelvis, Cervix	6MV/VMAT	25	180	4500	5/3/18	7/26/18
Cervix	Ir-192 HDR brachy	6	400	2400	7/11/18	7/26/18
	Number of F	hases Treat	of Rad (ments	02) 2 phases		
RT Discontinued Early			d Early ((01) RT completes as prescribed		

Flattening-Filter-Free (FFF)

Since there nothing in the path of the beam, there is no attenuation of the beam and hence we end up with a *higher dose rate*.

A high dose rate delivery of radiation means that the *treatment time can* <u>be reduced significantly.</u>

The limitation is that since the photon beam is not as uniform (flat) as it would be with a flattening filter, we are limited to the field size we can treat, typically very small targets (such as those targeted by SBRT, which limits the targets to no greater than 5 cm).

However, modern linacs can use IMRT planning techniques to "flatten" the beam in the absence of a conventional flattening filter.

Treatment Summary states that a 6 MV beam energy was used. What does it really mean?

- a. All photons on beam have energy of 6 MV
- b. The average photon energy of the beam is 6 MV
- c. The maximum photon energy of the beam is 6 MV
- d. The minimum photon energy of the beam is 6 MV

NAACCR

NAACCR

Clinical Scenario 1: BOT H&N

Patient is a 66 y/o w/f with history of nodular goiter who was being evaluated as part of routine surveillance when a LT level II cervical node was noted on neck ultrasound. Pt denies feeling any neck fullness or palpable neck mass. Laryngoscopy revealed a 1.5 cm BOT mass.

11/7/19: Needle bx of suspicious node= poorly differentiated squamous cell carcinoma, negative for p16.

12/6/18: BOT bx= positive for malignancy, squamous cell carcinoma.

Pt opted for concurrent chemotherapy with cisplatin + EBRT.

Clinical Scenario 1: BOT H&N

Radiation Therapy Summary: IMRT & VMAT delivery used.

Treatment site	Energy	Dose/fx	# of fx	Total dose	Start date	End date
BOT/Neck	6X	200	35/35	7,000	1/29/19	3/19/19

	Seg	#	Field	Code/Definition
		1	Rad/Surg Sequence	0 No radiation and/or sur
		2	Reason No Rad	0 Radiation was admin
	Ń	3	Location of Rad	1 All RT at this facility
	ma	4	Date Started/Flag	01/29/19
	Ē	5	Date Finished/Flag	03/19/19
	Su	6	Number of Phases	01
		7	Discontinued Early	01 Radiation completed
		8	Total Dose	007000
		9	Volume	22 Oropharynx
		10	Rad to Nodes	01 Neck lymph node regions
	e 1	11	Modality	02 External beam, photons
e 1	IAS	12	Planning Technique	05 IMRT
	Ы	13	Number of Fractions	035
S.		14	Dose per Fraction	00200
a		15	Total Phase 1 Dose	007000
\mathbf{O}		16	Volume	00
		17	Rad to Nodes	
	e 2	18	Modality	
	Ias	19	Planning Technique	
	Ph	20	Number of Fractions	
		21	Dose per Fraction	
		22	Total Phase 2 Dose	
		23	Volume	
		24	Rad to Nodes	
	3	25	Modality	
	ase	26	Planning Technique	
	Ph	27	Number of Fractions	
	1	28	Dose per Fraction	
		20	Tet I Direct 2 Direct	
35				

Case 1 Rationale:

#6: Very straightforward case. In a single phase, the primary site (BOT) and the regional LNs were targeted.#9: The BOT is found in the oropharynx.#10: Neck nodes also irradiated in this phase.

Note: VMAT (Volumetric Modulated Arc Therapy) is a form of rotational therapy, which <u>requires IMRT</u> <u>planning technique</u>.

NAACCR

Clinical Scenario 2: BOT p16+

53 y/o w/f with h/o GERD HTN, who presented to her PCP with a palpable neck mass. Pt is non- smoker. Social etoh

Pt completed RT tx w/ concomitant chemo for Stage II (T1N2M0) SCC of the BOT. For setup, pt was supine on tx table and an Aquaplast mask was made for immobilization. CT-based planning was used to design a <u>VMAT</u> beam arrangement to treat H&N. Tx plan called for 3 arcs: arc 1 from 184 to 176 degrees, arc 2 from 176 to 184 degrees, and arc 3 from 184 to 176 degrees. The <u>CTV-1</u> included BOT lesion and involved LNs and was tx @ 200 cGy/day to 7000 cGy with the dose delivered at the 94% isodose.

Clinical Scenario 2: BOT p16+...

53 y/o w/f with h/o GERD HTN, who presented to her PCP with a palpable neck mass. Pt is non- smoker. Social etoh

The <u>CTV-2</u> was the remainder of the upper and mid-neck nodes, and treated at 180 cGy/day to 6300 cGy. The <u>CTV-3</u> encompassed bilateral low neck and supraclavicular nodes, and was treated at 160 cGy /day to 5600 cGy. Daily <u>cone beam CT</u> was done prior to tx to confirm setup. Pt also received concomitant chemo with Cisplatin.

37

NAACCR

Clinical Scenario 2-SIB/VMAT Treatment

Treatment site	Energy	Dose/fx	# of fx	Total dose (cGy)	Start date	End date
CTV-1- BOT/LNs	6X	200	35/35	7,000	10/22/18	12/14/18
CTV-2- Upper/Mid Neck LNs	6X	180	35/35	6,300	10/22/18	12/14/18
CTV-3-Bilat low neck/SCV	6X	160	35/35	5,600	10/22/18	12/14/18

Treatment Modality = 02: external beam, photons Planning Technique = 05: IMRT

NAACCR

Clinical scenario 2- H&N w/ SIB-VMAT...

When Simultaneous Integrated Boost (SIB) is used, the regional dose along with the boost doses are delivered *at the same time every day*.

This is why each phase consists of 35 fractions.

The field size is basically reduced to deliver the boost on a daily basis.

Simultaneous Integrated Boost (SIB)

	Seg	#	Field	Code/Definition	
		1	Rad/Surg Sequence	0 No radiation and/or sur	
		2	Reason No Rad	0 Radiation was admin	
ry.		3	Location of Rad	1 All RT at this facility	
_	nai	4	Date Started/Flag	10/22/18	
	mm		Date Finished/Flag	12/14/18	
	Su	6	Number of Phases	03	
		7	Discontinued Early	01 Radiation completed	
		8	Total Dose	007000	
		9	Volume (CTV1_70Gy)	22 Oropharynx	
7		10	Rad to Nodes	01 Neck lymph node regions	
	e 1	11	Modality	02 External beam, photons	
	las	12	Planning Technique	05 IMRT	
C)	Ph	13	Number of Fractions	035	
Ŭ.		14	Dose per Fraction	00200	
ð		15	Total Phase 1 Dose	007000	
C		16	Volume (CTV2_63Gy)	22 Oropharynx	
•		17	Rad to Nodes	01 Neck lymph node regions	
	e 2	18	Modality	02 External beam, photons	
	has	19	Planning Technique	05 IMRT	
	P	20	Number of Fractions	35	
		21	Dose per Fraction	00180	
		22	Total Phase 2 Dose	006300	
		23	Volume (CTV3_56Gy)	22 Oropharynx	
		24	Rad to Nodes	01 Neck lymph node regions	
	ie 3	25	Modality	02 External beam, photons	
	has	26	Planning Technique	05 IMRT	
	P	27	Number of Fractions	035	
		28	Dose per Fraction	00160	
		29	Total Phase 3 Dose	005600	

Case 2 Rationale:

#6: Three CTV (or PTV) volumes = 3 phases.
#8: Always select highest PTV (CTV) dose as total dose.
#9: BOT located in oropharynx.
#13, 20, 27: When SIB is used, number of fx should be the same for all phases of SIB.
#10, 17, 24: As per treatment summary, all phases included regional lymphatics.
Note: Since all PTVs are treated simultaneously (SIB), order phases from largest delivered dose to lowest delivered dose.

NAACCR

Clinical Scenario 3: Quad Shot

73 y/o male with multiple comorbidities who presented with palpable neck mass bilateral.

Work up imaging and bx revealed a well differentiated squamous cell carcinoma of oropharynx.

Patient was treated using the Quad Shot RT technique.

Clinical Scenario 3: Quad Shot

RT treatment summary:

Site	Energy	Dose/fx	# of fx	Total dose	Start date	End date
Oropharynx, bilat LNs	6X	740 cGy	2	1,480 cGy	4/9/19	4/10/19
Oropharynx, bilat LNs	6X	740 cGy	2	1,480 cGy	4/30/19	5/1/19
Oropharynx, bilat LNs	6X	740 cGy	2	1,480 cGy	5/21/19	5/22/19

How many total fractions?

How many phases??

Quad Shot-Palliative RT

First used in palliative RT for pelvic malignancies,

► Most common fractionation:

➤<u>370 cGy twice daily (BID)</u>, for two consecutive days (1,480 cGy), repeated every 3-4 weeks for a total of 4,400 cGy in 3 cycles.

Expect to see more hypofractionated RT prescriptions for H&N palliative treatments.

	C		D' 11	CID e W
	Seg	#	Field	Code/Definition
		1	Rad/Surg Sequence	0 No radiation and/or sur
A.		2	Reason No Rad	0 Radiation was admin
		3	Location of Rad	1 All RT at this facility
umma	ma	4	Date Started/Flag	04/09/19
	m	5	Date Finished/Flag	05/22/19
	S	6	Number of Phases	01
		7	Discontinued Early	01 Radiation completed
		8	Total Dose	004400
		9	Volume	22 Oropharynx
		10	Rad to Nodes	01 Neck lymph node regions
~	e 1	11	Modality	02 External beam, photons
(1)	has	12	Planning Technique	05 IMRT
Ð	Π	13	Number of Fractions	012
S		14	Dose per Fraction	00370
a		15	Total Phase 1 Dose	004400
\mathbf{O}		16	Volume	00
-		17	Rad to Nodes	
	e 2	18	Modality	
	las	19	Planning Technique	
	Pł	20	Number of Fractions	
		21	Dose per Fraction	
		22	Total Phase 2 Dose	
		23	Volume	
		24	Rad to Nodes	
	3	25	Modality	
	ase	26	Planning Technique	
60	Ph	27	Number of Fractions	
		28	Dose per Fraction	
		20	Dese per l'action	

NAACCR

Case 3 Rationale:

#6: Single phase delivered over a 3-4 week period,
#11: 6X beam energy is indicative of EBRT in photon mode.
#12: Quad shot typically delivered via an IMRT plan.
Need to confirm with your facility.
#12: Dose delivered BID (twice a day) in 6 days (3 cycles).

More Questions

- 1. Should we ever expect to encounter a <u>2D planning technique</u> for the management of a H&N primary for <u>curative intent</u>?
- 2. Treatment summary states the planning was with "Dose Painting". How do I code that?
- 3. S-frame immobilization device used. Virtual simulation performed using 1 set of CT images to define PTV, OARs, localization. IMRT calculation completed using a SAD setup. Plan consisted of 7 non-coplanar x-ray beams with an energy of 6 MV. Dose-volume histogram was computed for this plan, verifying that 100% of planning target volume (PTV) was covered by prescribed dose of 6600 cGy. What information here is useful???

NAACCR

Resources

•"Handbook of Evidence-Based Radiation Oncology", 3rd ed. 2018 Edition

• "Principles and Practice of Radiation Therapy" 4th edition

Excellent textbook.

Hard copy: \$191

Kindle edition: \$147

Consider a used copy

49

49

UNIT I: INTRODUCTION

- 1 Cancer: An Overview, 1 Stephanie Eatms
- The Ethics and Legal Considerations of Cancer Management, 20 Betrye C. Wilson
- 3 Principles of Pathology, 42 Leia D.C. Levy

- UNIT II: PHYSICS, SIMULATION, AND TREATMENT PLANNING
 30 Respiratory System Turnors, 621 Doma Sinson and John Lahaniatis

 12
 Applied Mathematics Review, 259 Charles M. Washington and E. Richard Bowire Jr.
 31 Head and Neck Cancers, 643 Romite G. Legano
 Charles M. Washington and E. Richard Bawiec Jr.
- Control and Traduction to Radiation Therapy Physics, 270
 270
 Central Nervous System Tumors, 686

 Narayan Sahoo
 Narayan Sahoo
 Physics, 270
 Physics, 270
- iil'ad N. Cohen

- Culture of Safety in Radiation Oncology, 350 Lukasz M. Mazur, Matthew Keefe, and Robert D. Adams
 Pediatric Solid Turnors, 822 Public Millione
- Likasz M. anzur, Mannen Kerg, um newtowa
 Printp Villance

 9 Quality Improvement in Realiation Oncology, 365
 38 Skin Cancers and Melanoma, 839

 Lika Bartenbagen and Judith M. Schneider
 Charles M. Washington

- 20 Surface and Sectional Anatomy, 388 harles M. Washington
- 21 Simulator Design, 429 Nora Uricchio, John Givens, and James Keskemety
 - Procedures, 451 Nora Uricchio, John Givens, James Keskemety, and Dennis Leaver
 - 23 Photon Dosimetry Concepts and Calculations, 480 Julius Armstrong and Charles M. Washington
 - 25 Electron Beams in Radiation Therapy, 536
- Ginu C. Parsmore
 58

 Ginu C. Parsmore
 23

 Photon Dosimetry Concepts and Calculations, 480

 Detection and Diagnosis, 87
 Jalius Armarizer and Calculations, 480

 Medical Imaging, 106
 24

 Brink Lizener
 Charlotter M. Frado and Karl, L. Prado

 7
 Treatment Delivery Equipment, 132

 Linds Affred and Demis Leaver
 Adam F. Kempto

 8
 Treatment Procedures, 156

 Annetter M. Coleman
 Annetter M. Coleman and Ana Saiote

- Unit III: PRACTICAL APPLICATIONS

 Facilities, 178
 UNIT III: PRACTICAL APPLICATIONS

 Lana Harron Bass and Charles M. Washington
 27

 D Patient Assessment, 219
 Jana Kah and Lisu Batrehagen

 Susan Celata Machaac and Joanne Dowcette
 28

 Lymphoreticular System Turnors, 588
- Image: Second Vectoral MacIsaac and Joanne Doucette
 28
 Lymphoraticular System Tumors, 588

 Pharmacology and Drug Administration, 240
 Amanda Sorg
 - 29 Endocrine System Tumors, 601 Seth Miller, Jessica Church, and Robert D. Adams
- 14 Aspects of Brachytherapy, 293 Gil ad N. Cohen 33 Digestive System Tumors, 705 Letta Recensor, Ventor
 - 34 Gynecologic Cancers, 738
- Gil'ad N. Cohen
 34
 Gynecologic Cancers, Kameka Rideaux

 15
 Special Procedures, 310
 Xameka Rideaux

 Michael T. Gulin
 35
 Male Reproductive an Tumors, 753

 16
 Particle Therapy, 323
 Tumors, 753

 Mathew B. Palmer
 Megan L. Trad

 17
 Radiation Safety and Protection, 338
 Bereast Cancer, 795

 Low G. Carmain
 T. Lowahon Bring and Nin
 35 Male Reproductive and Genitourinary

 - T. Jonathan Yang and Simon N. Powell

Principles and Practice of Radiation Therapy, 4th Edition

Resources

•https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards/Practice-Parameters-by-Subspecialty

There are a couple of links you will find tremendously useful:

- Radiation Oncology: General
- Radiation Oncology: Radiation Therapy
- NCCN Guidelines-provides therapeutic dose range for most sites.

NAACCR

